Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1097). Services for accessing these data are described at the back of the journal.

References

Colton, R., Ebner, J. \& Hoskins, B. F. (1988). Inorg. Chem. 27, 19931999.

Cornock, M. C. \& Stephenson, T. A. (1977). J. Chem. Soc. Dalton Trans. pp. 501-505
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands
Fackler, J. P. Jr. Thompson. L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. \& Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397-2403.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Houlton, A., Roberts, M. G., Silver, J. \& Michael, G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 1543-1547.
Jain, V. K., Chaudhury, S., Vyas, A. \& Bohra, R. (1994). J. Chem. Soc. Dalton Trans. pp. 1207-1211.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Reger, D. L. \& Collins, J. E. (1995). Inorg. Chem. 34, 2473-2475.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 543-545

trans-Diaqua(C-meso-1,5,8,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^{4} N$)nickel(II) dichloride

Kaliyamoorthy Panneerselvam, ${ }^{a}$ Tian-Huey Lu, ${ }^{a}$ Ta-Yung Chi, ${ }^{b}$ Fen-Ling Liao ${ }^{b}$ and Chung-Sun Chung ${ }^{b}$
${ }^{a}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, and ${ }^{b}$ Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300. E-mail: thlu@phys.nthu.edu.tw

(Received 25 August 1998; accepted 15 December 1998)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{32}-\right.\right.$ $\left.\left.\mathrm{N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$, has been determined by X-ray diffraction. The Ni^{11} ion lies on an inversion center and is six-coordinate in a distorted octahedral geometry, with the four N atoms of the macrocyclic ligand equatorial and the two water molecules axial. The tetradentate macrocyclic ligand adopts a configuration having two six-membered rings in a chair form and two fivemembered rings in a gauche form.

Comment

The nickel(II) complex of C-meso-1,5,8,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane, as with other tetraaza ligands, exists in equilibrium as a mixture of blue (paramagnetic, octahedral) and yellow (diamagnetic, square-planar) forms (Anichini et al., 1977). Miyamura et al. (1987) reported the crystal structure of the squareplanar species. In the present study, we report the isolation and X-ray structure of the trans-diaqua form, (I).

(I)

The title complex is octahedral around the metal center. An inversion center exists on the $\mathrm{Ni}^{I I}$ ion. Two water molecules coordinate axially to the central $\mathrm{Ni}^{\mathrm{II}}$ ion. The $\mathrm{Ni}^{\mathrm{II}}$ ion and the four ligand N atoms are exactly coplanar. The ligand skeleton of the title complex takes the most stable trans-III conformation designated by Bosnich et al. (1965), with the two sixmembered rings in a chair form and the two fivemembered rings in a gauche form. The Ni1-N2 distance $[2.069$ (3) \AA] is essentially equivalent to those found in trans-[Ni(1,4,8,11-tetraazacyclotetradecane) X_{2}] [2.067 (2) \AA for $X=\mathrm{Cl}$ (Ito et al., 1984), and 2.050 (5) and $2.060(6) \AA$ for $X=\mathrm{NO}_{3}$ (Boeyens \& Hancock, 1984)] and trans-[$\mathrm{Ni}(1,4,8,11$-tetraazacyclotetradecane)$\left.\left(\mathrm{OH}_{2}\right)\right] \mathrm{Cl}_{2}$ [2.072 (2) \AA; Mochizuki \& Kondo, 1995]. The $\mathrm{Ni} 1-\mathrm{Nl}$ distance of $2.113(3) \AA$ is considerably longer than $\mathrm{Ni} 1-\mathrm{N} 2$, and this value is similar to those in cis-(nitrato- $\left.O, O^{\prime}\right)(\mathrm{C}$-rac-1,5,8,12-tetra-methyl-1,4,8,11-tetraazacyclotetradecane- $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$)$\mathrm{Ni}^{\text {II }}\left(\mathrm{NO}_{3}\right)$ [2.134 (2) \AA; Panneerselvam et al., 1999].

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. H atoms are shown only on the amine N atoms and the water ligands.

This could be due to steric interaction involving the methyl group on N 1 and Ni -bound water molecules. The $\mathrm{Ni}-\mathrm{O}$ length is 2.216 (3) \AA, which is longer than those found in trans-[Ni(1,4,8,11-tetraazacyclotetradecane)$\left.\left(\mathrm{OH}_{2}\right)_{2}\right]^{2+}[2.176$ (2) \AA; Mochizuki \& Kondo, 1995] and $\mathrm{Ni}\left(\mathrm{OH}_{2}\right)_{6}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}[2.058$ (2) Å; Tahirov et al., 1994]. All bond lengths and angles in the ligand moiety are normal. Hydrogen bonds (Table 2) stabilize the structure.

Experimental

C-meso-1,5,8,12-Tetramethyl-1,4,8,11-tetraazacyclotetradecane was prepared according to literature methods (Miyamura et al., 1987). Nickel(II) chloride (0.42 g) and C-meso-1,5,8,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane $(0.45 \mathrm{~g})$ were dissolved in water (100 ml) and stirred for 4 h at 333 K . The volume of the resulting solution was reduced by rotatory evaporation. Purple crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature after several days.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{~N}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=422.08$
Monoclinic
$P 2_{1} / n$
$a=8.984$ (3) \AA
$b=11.912(4) \AA$
$c=9.548(3) \AA$
$\beta=108.34(3)^{\circ}$
$V=969.9(6) \AA^{3}$
$Z=2$
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.577, T_{\text {max }}=0.629$
1830 measured reflections
1719 independent reflections 1543 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.144$
$S=1.132$
1719 reflections
106 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ni 1 - N 2	2.069 (3)	N2-C2	1.481 (5)
$\mathrm{Ni} 1-\mathrm{Ni}$	2.113 (3)	N2-C3	1.491 (5)
Nil-OWl	2.216 (3)	$\mathrm{Cl}-\mathrm{C} 2$	1.513 (5)
NI-C6	1.479 (5)	C3-C4	1.513 (5)
N --C1	1.483 (5)	C3-C7	1.523 (5)
N $1-\mathrm{CS}^{1}$	1.485 (5)	C4-C5	1.521 (6)
$\mathrm{N} 2-\mathrm{NiI}-\mathrm{N} 1$	86.6 (1)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Nil}$	106.4 (2)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{OWI}$	91.1 (1)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Nil}$	117.2 (2)
$\mathrm{NI}-\mathrm{Nil}-\mathrm{OWl}$	91.7 (1)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	111.0(3)
C6-N1-C1	108.8 (3)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	109.4 (3)
$\mathrm{C} 6-\mathrm{N} /-\mathrm{C}^{1}$	108.1 (3)	N2-C3-C4	110.2 (3)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C}^{1}$	109.9 (3)	N2-C3-C7	112.0 (3)
C6-NI-Nil	116.7 (2)	C4-C3-C7	109.9 (3)
$\mathrm{Cl}-\mathrm{Nl}$ - Nil	101.5 (2)	C3-C4-C5	116.6 (3)
C5'-NI-Nil	111.6 (2)	N1'-C5-C4	114.0 (3)
C2-N2-C3	114.0 (3)		

Symmetry code: (i) $-x,-y,-z$.
Table 2. Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{Cl1} I^{\prime}$	0.91	2.35	$3.250(3)$	171.72
$\mathrm{OWl}-\mathrm{HIOW} \cdots \mathrm{ClI}$	0.94	2.25	$3.137(3)$	156.69
$\mathrm{OWl-H2OW} \cdots \mathrm{ClI}$	1.00	2.26	$3.236(3)$	166.69
Symmetry codes: (i) $-x,-y,-z$ (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.				

All the H atoms were fixed geometrically and refined using constraint with isotropic displacement parameters ($U_{\text {iso }}=$ $0.050 \AA^{2}$).

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: NRCVAX (Gabe et al., 1989). Software used to prepare material for publication: SHELXL97.

The authors thank the National Science Council for support under grants NSC88-2811-M007-0004, NSC88-2112-M007-013 and NSC87-2113-M007-041).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1051). Services for accessing these data are described at the back of the joumal.

References

Anichini, A., Fabbrizzi, L., Paoletti, P. \& Clay, R. M. (1977). Inorg. Chim. Acta, 24, 21-23.
Boeyens, J. C. A. \& Hancock, R. D. (1984). J. Am. Chem. Soc. 106, 5947-5955.
Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4. 1102-1108.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Crnst. 22, 384-387.

Ito, T., Kato, M. \& Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 26412649.

Miyamura, K., Kohzuki, M., Saburi, M., Gohshi, Y., Tsuboyama, S.. Tsuboyama, K. \& Sakurai, T. (1987). J. Chem. Soc. Dalton Trans. pp. 3093-3098.
Mochizuki, K. \& Kondo, T. (1995). Inorg. Chem. 34, 6241-6243.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24, 351-359.
Panneerselvam. K., Lu. T.-H., Chi, T.-Y.. Liao, F.-L. \& Chung, C.-S. (1999). Acta Crust. C55. In the press.

Sheldrick, G. M. (1990). Acta Cr.st. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.

Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tahirov, T. H., Lu, T.-H., Huang, C.-C. \& Chung, C.-S. (1994). Acta Cryst. C50, 668-669.

Acta Cryst. (1999). C55, 545-547

trans-Diaquabis(benzoato-O)bis(nicotin-amide- N^{1})cobalt(II)

Tuncer HöKelek ${ }^{a *}$ and Hacali Necefoğlu ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Physics, 06532
Beytepe, Ankara, Turkey, and ${ }^{b}$ Kafkas University,
Department of Chemistry, Kars, Turkey. E-mail:
merzifon@eti.cc.hun.edu.tr

(Received 15 October 1998; accepted 4 January 1999)

Abstract

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is a crystallographically centrosymmetric monomeric complex in which pyridine N , and carboxylate and water O atoms form a tetragonally Jahn-Teller-distorted octahedron about the $\mathrm{Co}^{\mathrm{II}}$ ion, with bond distances of 2.150 (1), 2.085 (1) and 2.141 (1) \AA, respectively. There is a hydrogen bond between nicotinamide N and O atoms [N . O O 2.976 (2) \AA], and the non-coordinated O atom of the carboxylate group and that of nicotinamide form hydrogen bonds with water O atoms [$\mathrm{O} \cdots \mathrm{O}$ 2.580 (2) and 2.911 (1) Å, respectively].

Comment

The structures of metal complexes having different benzoic and/or nicotinic acid derivatives as ligands have been the subject of much interest in our laboratory; examples are $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}(\mathrm{NA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(II); where NA is nicotinamide, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$; Hökelek et al., 1998], $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(III); where DENA is diethylnicotinamide, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$; Hökelek et al., 1997], $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(IV); Hökelek \& Necefoğlu, 1997], [$M\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$] $\left[(\mathrm{V})\right.$; where $M=\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$; Tahir et al., 1997], $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}(\mathrm{DENA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$], [(VI); Hökelek \& Necefoğlu, 1996], [$\left.\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}(\mathrm{DENA})_{2}\right]$ [(VII); Hökelek et al., 1996] and $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{4}(\mathrm{DENA})_{2}\right]$ [(VIII); Hökelek et al., 1995]. The structure-functioncoordination relationships of the arylcarboxylate ion in Co ${ }^{\text {II }}$ complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups in the phenyl ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Adiwidjaja et al.,

1978; Antsyshkina et al., 1980). When pyridine and its derivatives are coordinated instead of water molecules, the structure is completely different (Catterick et al., 1974).

In the $\left[\mathrm{Co}\left(p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ [(IX); Nadzhafov et al., 1981] and $\left[\mathrm{Co}\left(p-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ [(X); Amiraslanov et al., 1979] complexes, the Co atoms are situated at centres of symmetry and are surrounded by six O atoms forming slightly distorted octahedrons. Four positions are occupied by water molecules and the other two by O atoms of the carboxyl groups of p-nitrobenzoato and p-aminobenzoato anions, respectively. In $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}(\mathrm{NA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ [(XI); Hökelek \& Necefoglu, 1998], the Co atom is also situated at a centre of symmetry and is surrounded by four O atoms forming a slightly distorted square-planar arrangement; the pyridine N atoms of NA complete a distorted octahedral coordination.

The structure determination of the title compound, (I), was undertaken in order to determine the ligand properties of nicotinamide (NA) and benzoate ligands,

(I)
and to compare the coordination geometries when the NA ligands are substituted for water in complexes (IX) and (X). The title compound is a monomeric complex with cobalt in a centre of symmetry. All ligands are monodentate and the O atoms of each water molecule and benzoate group form a slightly distorted square-planar coordination around the Co atom, which is completed to a Jahn-Teller-distorted octahedron by the pyridine N atoms of NA at distances of 2.150 (1) \AA (Fig. 1). There are hydrogen bonds (Table 2) between the water Ol atom and the carboxyl O 3 and nicotinamide O 4 atoms, and between the nicotinamide N 2 and O 4 atoms. On the other hand, $\mathrm{N} 2-\mathrm{H} 22$ produces an $\mathrm{H} 22 \cdots \mathrm{O}^{i}$ contact of 2.68 (2) \AA, which is too long to be considered as a significant hydrogen bond [symmetry code: (i) $-x,-y, 1-z$]. The $\mathrm{O} 1 \cdots \mathrm{O}^{\mathrm{i}}$ distance (Table 2) is shorter than the corresponding distances in complexes (XI) and (IV) [(XI): O $\cdots \mathrm{O} 2.634$ (5) Å; (IV): O $\cdots \mathrm{O} 2.687$ (5) \AA].

In the carboxylate group, the $\mathrm{Cl}-\mathrm{O} 2$ and $\mathrm{Cl}-\mathrm{O} 3$ bond lengths (Table 1) are the same as in complexes (XI) and (IV) [(XI): 1.251 (2) and 1.254 (2) \AA; (IV): 1.251 (6) and 1.254 (7) \AA]. On the other hand, the $\mathrm{Cl}-$ O 2 bond length is shorter, while $\mathrm{C} 1-\mathrm{O} 3$ is the same according to the corresponding values in complexes (IX) and (X) [(IX): 1.292 (6) and 1.246 (8) Å; (X): 1.283 (4)

